Search results

Search for "superconducting spintronics" in Full Text gives 15 result(s) in Beilstein Journal of Nanotechnology.

Superconducting spin valve effect in Co/Pb/Co heterostructures with insulating interlayers

  • Andrey A. Kamashev,
  • Nadir N. Garif’yanov,
  • Aidar A. Validov,
  • Vladislav Kataev,
  • Alexander S. Osin,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2024, 15, 457–464, doi:10.3762/bjnano.15.41

Graphical Abstract
  • applications in modern superconducting spintronics [18][19][20][21][22]. In 1997, Beasley and coworkers proposed a theoretical F1/F2/S model of the SSV structure [1]. Another F1/S/F2 model was developed a little later in 1999 by Tagirov [2] and Buzdin and coworkers [3]. In these structures, F1 and F2 are
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2024

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • magnetization with a maximum appearing at high temperatures. It is also shown that the increase of the magnetization precession frequency can drastically change the spin distribution of quasiparticles at the S/FI interface. Keywords: ferromagnetic resonance; proximity effect; superconducting spintronics
  • superconductors opens new ways for the development of prospective spintronic devices such as magnon transistors [2][3] and superconducting magnon crystals [4]. In this context, the challenge of superconducting spin injection is one of the central problems in modern superconducting spintronics. There are several
  • a consistent theory of the inverse proximity effect is one of the central topics of modern superconducting spintronics. There is a series of theoretical papers [7][16][17][18][19] describing spin current injection and induced magnetization generation in microscopic [7][16] and quasiclassical [17][18
PDF
Album
Full Research Paper
Published 21 Feb 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • development in superconducting spintronics, based on functional nanostructures and Josephson junctions, has taken place [13][14]. The implementation of such devices in building blocks for quantum computers and for novel computers using non-von Neumann architecture with brain-like artificial neural networks
  • : The 12th International Conference on Intrinsic Josephson Effect and Horizons of Superconducting Spintronics”, which took place in September 2021 in Chisinau, Moldova. The presentations of the participants of the conference incorporating new ideas, technological approaches for the design of functional
  • nanostructures for superconducting spintronics, quantum electronics, and novel base elements for superconducting supercomputers became the core of this volume. The editors are convinced that this thematic issue will attract the attention of scientists, technologists, engineers, and IT experts, and will be useful
PDF
Editorial
Published 10 Jan 2023

Nonlinear features of the superconductor–ferromagnet–superconductor φ0 Josephson junction in the ferromagnetic resonance region

  • Aliasghar Janalizadeh,
  • Ilhom R. Rahmonov,
  • Sara A. Abdelmoneim,
  • Yury M. Shukrinov and
  • Mohammad R. Kolahchi

Beilstein J. Nanotechnol. 2022, 13, 1155–1166, doi:10.3762/bjnano.13.97

Graphical Abstract
  • difference with the magnetic moment of a ferromagnet in a φ0 junction leads to a number of unique features important for superconducting spintronics and modern information technology [1][2][3][4][5]. It allows one to control the magnetization precession by the superconducting current and affects the current
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2022

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • Abstract A series of Pd1−xFex alloy epitaxial films (x = 0, 0.038, 0.062, and 0.080), a material promising for superconducting spintronics, was prepared and studied with ultrafast optical and magneto-optical laser spectroscopy in a wide temperature range of 4–300 K. It was found that the transition to the
  • ]. Superconducting spintronics is a branch of superconducting electronics, the key components of which are thin-film magnetic Josephson junctions (MJJs), which include layers of superconductors (S), ferromagnets (F) and insulators (I) [1][2][3][14][15]. The use of MJJs considerably reduces the energy consumption
PDF
Album
Full Research Paper
Published 25 Aug 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • ; tunneling; Introduction The proximity effect between superconductors and ferromagnets has been investigated intensively in recent years [1][2], giving rise to the field of superconducting spintronics [3][4]. Among the emergent phenomena are π-junctions [5][6], reentrant and multiperiodic reentrant
PDF
Album
Full Research Paper
Published 20 Jul 2022

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • computing; devices exploiting spin polarized transport or integrated magnetic field; spin-valve; superconducting multilayers; superconducting spintronics; Introduction Competition between spin-polarized ferromagnetism and spin-singlet superconductivity leads to a variety of interesting phenomena including
  • ][9][10][11][12]. Therefore, utilization of this phenomenon for device applications requires accurate determination and control of the micromagnetic state of micro- or nanoscale devices. Similar control is needed for the operations of a large number of superconducting spintronics devices, including
PDF
Album
Full Research Paper
Published 17 Aug 2021

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • . This would require basic research for a deep understanding of the physical and chemical processes taking place at different structural levels of the used materials. In addition, the development of manufacturing technology for a fundamentally new device for superconducting spintronics requires a long
  • . 20-62-47009 “Physical and engineering basis of computers non-von Neumann architecture based on superconducting spintronics” (the remainder of the article).
PDF
Album
Full Research Paper
Published 24 Nov 2020

Functional nanostructures for electronics, spintronics and sensors

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1704–1706, doi:10.3762/bjnano.11.152

Graphical Abstract
  • and memory circuits, where some of these prospective examples and the technological processes related to their fabrication are presented in this thematic issue. In the last decade, very rapid development in a subfield of solid-state physics and engineering – superconducting spintronics based on
  • , new ideas, technological approaches to design of functional nanostructures for superconducting spintronics, quantum electronics, sensors and novel base elements for superconducting supercomputers are the core of this thematic issue. As the thematic issue editor, I would like to thank all highly
  • on superconducting spintronics” for the support. Anatolie Sidorenko Chisinau, July 2020
PDF
Editorial
Published 10 Nov 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • superlattices can be used as tunable kinetic inductors designed for artificial neural networks representing the information in a “current domain”. Keywords: cryogenic computing; spin-valve; superconducting neural network; superconducting spintronics; Introduction Multilayer superconductor/ferromagnetic (S/F
PDF
Album
Full Research Paper
Published 07 Sep 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • ; epitaxial superconductor–ferromagnet heterostructure; palladium–iron alloy (PdFe); vanadium nitride (VN); superconducting spintronics; Introduction Since its invention, rapid single-flux quantum (RSFQ) logic [1][2] based on superconducting digital electronics has been seriously considered as an alternative
  • to semiconductor electronics for supercomputing applications [3][4][5]. Merging it with magnetism [6][7][8] has given a birth to superconducting spintronics [9][10]. The latter concept was implemented in the US Cryogenic Computing Complexity (C3) Program [11][12][13] with the goal “to demonstrate a
  • ferromagnets to improve the operation characteristics of superconductor–ferromagnet–insulator heterojunctions for superconducting spintronics applications. For example, cubic superconducting MoNx, which is a Josephson junction technology material [4][5][46], exhibits a good epitaxial match with Pd1−xFex alloys
PDF
Album
Full Research Paper
Published 15 May 2020

Periodic Co/Nb pseudo spin valve for cryogenic memory

  • Nikolay Klenov,
  • Yury Khaydukov,
  • Sergey Bakurskiy,
  • Roman Morari,
  • Igor Soloviev,
  • Vladimir Boian,
  • Thomas Keller,
  • Mikhail Kupriyanov,
  • Anatoli Sidorenko and
  • Bernhard Keimer

Beilstein J. Nanotechnol. 2019, 10, 833–839, doi:10.3762/bjnano.10.83

Graphical Abstract
  • alignment can be controlled with a magnetic field of only several tens of Oersted. Keywords: cryogenic computing; neutron scattering; spin valve; superconducting spintronics; Findings Superconductor digital devices have attracted growing attention due to their unique energy efficiency and performance [1
  • Competitive Growth of Kazan Federal University, AS would like to thank the support of the project of the Moldova Republic National Program ”Nonuniform superconductivity as the base for superconducting spintronics” (”SUPERSPIN”, 2015-2018), grant STCU #6329 (2018-2019) and the ”SPINTECH” project of the HORIZON
PDF
Album
Letter
Published 09 Apr 2019

Beyond Moore’s technologies: operation principles of a superconductor alternative

  • Igor I. Soloviev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Mikhail Yu. Kupriyanov,
  • Alexander L. Gudkov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2017, 8, 2689–2710, doi:10.3762/bjnano.8.269

Graphical Abstract
PDF
Album
Review
Published 14 Dec 2017

Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions

  • Stefan Kolenda,
  • Peter Machon,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2016, 7, 1579–1585, doi:10.3762/bjnano.7.152

Graphical Abstract
  • , the competition of these antagonistic spin orders can be exploited to produce superconducting spintronics functionality [1][2][3]. Several promising spintronic effects have been theoretically predicted and subsequently experimentally observed. Examples are the odd-frequency triplet supercurrent [4][5
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2016

Charge and spin transport in mesoscopic superconductors

  • M. J. Wolf,
  • F. Hübler,
  • S. Kolenda and
  • D. Beckmann

Beilstein J. Nanotechnol. 2014, 5, 180–185, doi:10.3762/bjnano.5.18

Graphical Abstract
  • currents in superconductors may be useful for future superconducting spintronics devices. Further, our analysis of the temperature dependence hints at the importance of new thermoelectric effects in nanoscale superconductor-ferromagnet hybrids. False color scanning electron microscopy image of one of our
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2014
Other Beilstein-Institut Open Science Activities